

Welcome to pysig’s documentation!

Contents:

	About
	Feature set

	Terminology

	Logging support

	Roadmap

	Authors

	Getting started
	The basics

	Network

	Features
	Subscriptions

	Broadcast events

	Channel Events

	Requests

	Extending functionality
	The basics

	Exteding Signal class

	Network features
	Important

	Use cases

	Design

	Built-in carriers

Indices and tables

	Index

	Module Index

	Search Page

About

Pysig is a framework designed to manage event dispatching between two or more registered endpoints.
The main philosophy behind a signaling framework, like pysig is, is to simplify the process by whitch
a certain endpoint receives notifications or events from another, in an efficient and simple way.

One of the most interesting features of pysig is that it has the ability to dispatch messages
over network, between different machines or different processes running on the same machine.

Feature set

To make a very short summary of what pysig can do, we could list the followings:

	
	it enables subscription mechanisms that are able to

	
	register for a specific event triggered by a specific sender

	register for broadcast events triggered by any event fired by a specific sender

	register for broadcast events triggered by any event of any sender

	register for channel events triggered by those senders that share same event

	register listeners without depending on the sender registration

	supports firing requests to connected senders, for accessing data on reply

	stateful sender connection, automatically firing connect and diconnect events

	distribute events intra-process, inter-process or over a given network

	built-in server and client implementation

	built-in support for transporting messages via TCP

	permits custom transport carrier implementation for dispatching events over different
communication mediums (like serial connections) or for transporting them under a different format

	permits custom data encoding (default is JSON encoding)

Terminology

Several terms are used in the context of this library and their meaning will be described here:

Router

Creates and manages the list of senders and listeners.

When run over a certain network, the router connects itself to a given carrier in order to
transport messages and also comes in two flavors:

	the server that is responsible with managing with the flow of events for all registered listeners or senders

	the client that is responsible with communicating with the server for the purpose of registering listeners, senders or events

Sender

Represents the endpoint that signals the events.

It is also the endpoint that is optionaly capable of responding to requests.

Listener

Represents the endpoint that registers itself for receiving signaled events.

Event

Represents the object that stores the list of registered listeners.

An event is identified by its given name and is attached to a specific sender.

	There are many types of events supported by pysig:

	
	specific events

	broadcast events

	channel events

Signal

Represents the object responsible with triggering the events.

The signal carries out the list of events it knows it must fire when invoked.

Carrier

Represents the object in charge with transporting data over a given communication medium.

pysig comes with a list of built-in carriers, described later on in this documentation.

Logging support

Before using the library, it will be good to know that is supports logging. The default ‘logging’
library from python, can be connected to pysig, in the following manner:

import logging
import sig

prepare logger object
logging.basicConfig()
logger = logging.getLogger('sig')

setup sig logger
sig.setup_logger(logger)

If by any means, the logging library is not acceptable, pysig has its own logging utility called SimpleLogger.
This utility will use print to output the logs, and inspect module in order to trace source line number and
caller function. It will be described later in detail. (TBD)

import sig

prepare logger
logger = sig.SimpleLogger(tag= "[sig]", level= sig.LOG_LEVELS.LEVEL_INFO)

setup sig logger
sig.setup_logger(logger)

A glance of how the log will look like:

[sig][1713][connect][info]-[TCP_CL] Connecting to localhost:3000
[sig][1607][_thread_receive][info]-[TCP_CL] Started receive thread for localhost:3000
[sig][1653][_thread_receive][info]-[TCP_CL] Receive thread terminated

Roadmap

The current version of pysig is 0.7.1.

Until pysig reaches it’s first stable version, which will be 1.0, the author reserves the right
of changing the API if it’s necessary.
From version 1.0 all the versions of pysig sharing the same major number will be API compatible.

The modifications targeted for 1.0 version are:

	improve coverage of unit-tests

	improve multi-threading support

	improve ServerRouter and ClientRouter implementation

	improve CarrierTCPClient and CarrierTCPServer implementation

	improve examples

	improve overall documentation structure

	refactor design for direct requests

	add validation of communication protocol between ServerRouter and ClientRouter

	add SSL support to built-in TCP carriers

	add support for using multiple carriers at once for the very same server

Far fetched objectives:

	add ACL (Access Control List) support, for allowing access only to some listeners

Authors

Library develop and maintained by Alex Mircescu.

For feature requests or comments please address to mircescu [at] gmail.com.

Getting started

This sections intends to be a crash course of pysig library, describing basic usage scenarios.
For more information please refer to the rest of documentation. It will provide you all the necessary details
to understand all the features supported by pysig.

The basics

This example will show how you can create a simple router for managing the flow of events between a listener and a sender.
First, lets create a sender.

import sig

create router object
router = sig.Router()

create a sender
sender = router.addSender("my_sender", ["my_event_1", "my_event_2"])

It’s simple enough to understand, that we have created a sender object called my_sender that may trigger
two events in the near future.

Let’s trigger first event, to see how this is done.

create a trigger for my_event_1
sig_ev1 = sender.getSignal("my_event_1")

trigger this event
data = { "info1" : "something", "info2" : 2 }

do trigger
sig_ev1.trigger(data)

For the sake of simplicity, we can write this in only one line:

router.getSender("my_sender").getSignal("my_event_1").trigger({"info1":"somedata", "info2":2})

Now, what we have done, is to trigger an event with additional data attached, even though
no listeners are registered to it. That is no problem for pysig, but is somehow useless.

Lets define our callback function.

this is your callback function
def listen_to_events(info, data):
 event = info.get("event")
 sender = info.get("sender")
 print "Received event '%s' from sender '%s' having data '%s'" % (event, sender, data)

Now, let’s register it to the sender.

let's register our listener callback
router.addListener(listen_to_events, "my_sender", "my_event_1")

It’s done, we are listening to the first event of our sender.
You may notice, we used the router object for registering the listener.
We may also use the sender object with the same effect.

sender.addListener(listen_to_events, "my_event1")

The router object simplifies the registration.
But be aware, when using the router, the sender and event parameter are purely optional.
That is for a very good reason, the listener may register to all sender events or even all
router events, using special broadcast events that will be described later on in this documentation.

Note!

Please note that sender_identifier and event_identifier are the exact same objects passed by the
caller to the Router.addSender function and not just strings.
The only restriction regarding these parameters is that they need to be JSON-serializable and hashable.
Otherwise said, they can be str objects as well as int, float objects.

For example, this code is perfectly valid for pysig, but it also may be confusing:

[...]
sender = router.addSender(20, [1, 2.0, "2.0"])
sig_ev1 = sender.getSignal(1)
sig_ev2 = sender.getSignal(2.0)
sig_ev3 = sender.getSignal("2.0")
[...]

You can also use dictionaries as long as they are encoded:

import json
[...]
sender_name = { "id" : 123, "source" : "http://www.something.com" }
sender_name = json.dumps(sender_name)
sender = router.addSender(senderName, [1,2,3])
[...]

Example

Lets see how it looks, in the proper order.

import sig

this is your callback function
def listen_to_events(info, data):
 event = info.get("event")
 sender = info.get("sender")
 print "Received event '%s' from sender '%s' having data '%s'" % (event, sender, data)

create router
router = sig.Router()

create sender
sender = router.addSender("my_sender", ["my_event_1", "my_event_2"])
sig_ev1 = sender.getSignal("my_event_1")

register listener
router.addListener(listen_to_events, "my_sender", "my_event_1")

trigger first event
sig_ev1.trigger({"info1":"something", "info2":2})

The output will be, of course:

Received event 'my_event_1' from sender 'my_sender' having data '{'info1': 'something', 'info2': 2}'

Network

The above example is useful for dispatching events intra-process, otherwise said, inside the same application.
For distributing these events over a network, we have to use the server and client implementation of pysig.

Carrier

The communication between a pysig server and its client are assured by the Carrier class.
This class defines the abstraction layer necessary for pysig to communicate.
We can implement your own carrier, by deriving from this class.

Currently pysig supports only built-in TCP Client and TCP Server carriers.

Server

In order to receive commands remotely, you need to use instead of the Router
class the ServerRouter class.
The difference of this two, is that the second one requires a carrier for instantiation.

Client

In order to send commands remotely, you need to use the ClientRouter class instead
of the Router class.

Also, instead of addSender, addListener, removeSender, removeListener methods,
you are supposed to use the corresponding addRemoteSender, addRemoteListener,
removeRemoteSender and removeRemoteListener methods.

The first set of methods will register senders and listeners only locally, as explained
later in this documentation.

Examples

In the root of pysig repository we can find the examples folder.
In this folder we can find several ready to use examples, that shows network functionality support.
We will enumerate some of them.

generic_server.py

This example starts a basic pysig router server that also registers a sender which
periodically fires a given event.
The name of the sender and the event fired can be customized the the caller from stdin.

Log level (default: info):
Server bind (default: 0.0.0.0):
Server port (default: 3000):
Sender (default: timer):
Event (default: tick):
Event data (default: None):server data
Timer delay (default: 5):
[sig][36][info][info]-[TCP_SRV] Starting to listen on 0.0.0.0:3000
[sig][79][<module>][info]-[timer] Triggering event tick with data 'server data'

generic_client_sender.py

This example shows how to create a router client that connects to a given server.
It uses the client to register a custom sender that triggers an event periodically.
The address of router, the name of the sender and the name of the event are read from stdin.

Server IP (default: 127.0.0.1):
Server port (default: 3000):
Sender (default: timer_client):
Event (default: tick):
Event data (default: None):client data
Timer delay (default: 5):
[sig][36][info][info]-[TCP_CL] Connecting to 127.0.0.1:3000
[sig][36][info][info]-[TCP_CL] Started receive thread for 127.0.0.1:3000
[sig][60][<module>][info]-[timer_client] Triggering event tick with data 'client data'

generic_client_listener.py

This example shows how to create a router client that connects to a given server.
It uses the client to register a listener to a specific event, a broadcast
event or a channel event.
It reads the address of the router from stding and also the name of the sender
and event.

The output below, shows how we ran the example and instructed it to listen for the
tick event issued by the server called timer.

Server IP (default: 127.0.0.1):
Server port (default: 3000):
Sender (default: None):timer
Event (default: None):tick
[sig][36][info][info]-[TCP_CL] Connecting to 127.0.0.1:3000
[sig][36][info][info]-[TCP_CL] Started receive thread for 127.0.0.1:3000
[sig][41][listener][info]-[timer] Event tick received with data '"test"'

We can also instruct it to listen to the tick event issued by the generic_client_sender.py
as long as this example runs.

Server IP (default: 127.0.0.1):
Server port (default: 3000):
Sender (default: None):timer_client
Event (default: None):tick
[sig][36][info][info]-[TCP_CL] Connecting to 127.0.0.1:3000
[sig][36][info][info]-[TCP_CL] Started receive thread for 127.0.0.1:3000
[sig][41][listener][info]-[timer_client] Event tick received with data '"client data"'

When generic_client_sender.py is restarted, the example should output the following:

[sig][34][listener_connect][info]-Sender timer_client is now disconnected
[sig][34][listener_connect][info]-Sender timer_client is now connected

That is because the generic_client_listener.py automatically registers for the built-in
events sig.EVENT_CONNECT and sig.EVENT_DISCONNECT, for the indicated sender as this code shows:

client.addRemoteListener(listener_connect, sender, sig.EVENT_CONNECT)
client.addRemoteListener(listener_connect, sender, sig.EVENT_DISCONNECT)
client.addRemoteListener(listener, sender, event)

Note!

Using the examples, mentioned above, you can easily experiment the concept of
broadcast events, broadcast senders and channel events, by simply
modiifying the parameters passed from stdin.

alert_listener.py

This example implements a listener connected remotely to a pysig server, to a
list of events from a plural of senders, that triggers a Desktop notification for
Linux users, whenever an event was triggered.

web_events_logger.py

This example implements a web application that logs all the received events.
You need to install web.py library in order to make it work.

You can install web.py using pip:

pip install web.py

Just like alert_listener.py this example implements a listener connected
remotely to a pysig server.

From stdin you can configure it to listen to a list of specific events,
from a list of specific senders or to the broadcast event of specific senders
or to channel events.
After is configured you can modifiy the list of subscriptions by using a RESTful
API.

The log of events are printed out either in HTML or PLAIN text format.

The following is an example input of a possible configuration of web_events_logger.py
example, instructing it to:

	connect to the pysig server at 192.168.9.20:3000

	limit the number of events to 200 entries, after which the least-recent
entry will be deleted

	listen to all events from ifttt sender (registering to iffttt broadcast event)

	listen to the specific ir event from keros sender

	listen to the #notify channel from all senders

Server IP (default: 127.0.0.1):
Server port (default: 3000):
Queue limit (default: 20):200
Sender 1:ifttt
Event 1:None
Event 2:
Sender 2:keros
Event 1:ir
Event 2:
Sender 3:None
Event 1:#notify
Event 2:
Sender 4:

After configuring the web application via stdin the following output should be seen:

[sig][36][info][info]-[TCP_CL] Connecting to 192.168.9.20:3000
[sig][36][info][info]-[TCP_CL] Started receive thread for 192.168.9.20:3000
[sig][79][perform_registration][info]-Registering to ifttt:None
[sig][90][perform_registration][info]-done
[sig][79][perform_registration][info]-Registering to keros:ir
[sig][90][perform_registration][info]-done
[sig][79][perform_registration][info]-Registering to None:#notify
[sig][90][perform_registration][info]-done
http://0.0.0.0:8080/

The RESTful API that you can use with this web application is:

	/

	The index page will return the recorded log entries.
An optional parameter is the fmt parameter that can be passed as plain
or html. Default is html.

Another set of optional arguments is the sender and event parameter,
that once passed to the GET request it will filter out the log for the given
sender and/or event.

Ex: http://localhost:8080/?fmt=plain

	/regs or /registrations

	Returns the list of subscriptions this application is currently registered at.
Same as for index / page, the optional fmt parameter is used to
select format.

Ex: http://localhost:8080/regs?fmt=plain

	/clear or /flush

	Resets the list of logged events.

Ex: http://localhost:8080/clear

	/config or /cfg

	Receives the optional argument limit that is used to modify the limit of events
that logs and then outputs a JSON containing the current configuration.

Ex: http://localhost:8080/config?limit=100

	/add

	Registers to the given subscription and receives a sender and event parameter.
If you omit one of them, it will be defaulted to None.

Ex: http://localhost:8080/add?sender=timer&event=tick

	/remove or /rem

	Removes a certain registration by using the given sender and event parameters.
If you omit one of them, it will be defaulted to None.

Ex: http://localhost:8080/remove?sender=timer&event=tick

Features

Subscriptions

The above example shows how we can create a trivial sender and then register a listener to one of its events.
This mechanism is called subscription and it has several aspects related to it.

One of this aspects is that a listener can subscribe to a sender, before the sender is connected to pysig.
A listener is not forced to wait for a sender to connect in order to subscribe to its events.
Also, the listener can be informed when a sender is connected or disconnected via a special event, defined
by sig.EVENT_CONNECT and sig.EVENT_DISCONNECT attributes.

Types of subscriptions

	A listener can connect to multiple type of events, as follows:

	
	a specific event, triggered by a specific sender

	any event triggered by a specific sender, called sender broadcast event

	any event triggered by any sender, called router broadcast event

	a specific event, triggered by any sender, called channel

	Type of Event

	Event

	Sender

	Syntax

	normal

	specific

	specific

	router.addListener(callback, “sender”, “event”)

	sender broadcast

	any

	specific

	router.addListener(callback, “sender”, None)

	router broadcast

	any

	any

	router.addListener(callback, None, None)

	channel

	specific

	any

	router.addListener(callback, None, “event”)

Each of these types of events will be described below, in this documentation.

Example

Let’s see how a listener can subscribe before a sender is connected, in the following example:

import sig

this function will be called when the sender connects or disconnects
def listen_to_connect_disconnect(info, data):
 event = info.get("event")
 print "Sender connect/disconnect event, current state: ",
 if event == sig.EVENT_CONNECT:
 print "connected"
 else: print "disconnected"

this is your callback function
def listen_to_events(info, data):
 event = info.get("event")
 sender = info.get("sender")
 print "Received event '%s' from sender '%s' having data '%s'" % (event, sender, data)

def print_sender_state():
 print "Sender state: %s" % ("connected" if router.getSender("my_sender").isConnected() else "disconnected")

create router
router = sig.Router()

register listener, even thouhg no sender is yet connected
router.addListener(listen_to_events, "my_sender", "my_event_1")

register to connect and disconnect events
router.addListener(listen_to_connect_disconnect, "my_sender", sig.EVENT_CONNECT)
router.addListener(listen_to_connect_disconnect, "my_sender", sig.EVENT_DISCONNECT)

print_sender_state()

create sender (connect event will be triggered)
my_events = ["my_event_1", "my_event_2"]
sender = router.addSender("my_sender", my_events)

print_sender_state()

disconnect sender (disconnect event will be triggered)
router.removeSender(sender)

print_sender_state()

connect sender again (connect event will be triggered)
sender = router.addSender("my_sender", my_events)

print_sender_state()

trigger first event
sender.getSignal(my_events[0]).trigger(None)

This example will have the following output:

Sender state: disconnected
Sender connect/disconnect event, current state: connected
Sender state: connected
Sender connect/disconnect event, current state: disconnected
Sender state: disconnected
Sender connect/disconnect event, current state: connected
Sender state: connected
Received event 'my_event_1' from sender 'my_sender' having data 'None'

Broadcast events

We’ve talked about broadcast event, now it will be good to show an example of
how they work.

Just before we start, we need to know that there are two broadcast events in pysig:

	the sender broadcast event

	the router broadcast event

Sender broadcast event

As the name suggests, the sender broadcast event, is that special event
that is sent each time a specific sender triggers a signal.

A small example of how we can register a the broadcast event of a specific sender
named my_sender:

register to all events from this sender
router.addListener(listen_to_events, "my_sender")

This special event will be triggered upon any event sent by my_sender.
When registering to a broadcast event, we can differentiate between different events
fired by the same sender by using the info dictionary parameter passed to listeners
callback.

Router broadcast event

This is a special event that is triggered before any event from any sender is triggered.
When a listener is registered to this event, it will receive all events that are managed
by the router object.

register to all events from this router
router.addListener(listen_to_events)

Of course, you can differentiate between different senders, using the same info parameter.
The info parameter is constructed by the Signal class and contains the following information:

{
 "sender" : sender_identifier
 "event" : event_identifier
}

Example

In this example we will register a single listener, connected to all router events.
The listener will print out when a sender is connected or disconnected and any other
event triggered by any sender.

import sig

this function will be called for any signal triggered
def listen_to_any(info, data):
 event = info.get("event")
 sender = info.get("sender")

 if event == sig.EVENT_CONNECT:
 print "Sender '%s' is now connected" % (sender)
 elif event == sig.EVENT_DISCONNECT:
 print "Sender '%s' is now disconnected" % (sender)
 else:
 print "Sender '%s' triggered event '%s' with data '%s'" % (sender, event, data)

create router
router = sig.Router()

register listener, even thouhg no sender is yet connected
router.addListener(listen_to_any)

create sender (connect event will be triggered)
my_events = ["my_event_1", "my_event_2"]
sender = router.addSender("my_sender", my_events)

disconnect sender (disconnect event will be triggered)
router.removeSender(sender)

connect sender again (connect event will be triggered)
sender = router.addSender("my_sender", my_events)

connect another sender
sender2 = router.addSender("my_second_sender", my_events)

trigger some events
sender.getSignal(my_events[0]).trigger(None)
sender2.getSignal(my_events[1]).trigger(None)

And the output:

Sender 'my_sender' is now connected
Sender 'my_sender' is now disconnected
Sender 'my_sender' is now connected
Sender 'my_second_sender' is now connected
Sender 'my_sender' triggered event 'my_event_1' with data 'None'
Sender 'my_second_sender' triggered event 'my_event_2' with data 'None'

Needless to say, registering broadcast events can be a performance penalty if the listener
is only interested in receiving only a couple of events and not all.
It may still be good for debugging and tracing events when necessary.

Channel Events

A channel event is actually an event that shares a plural of senders.
So far, the structure of events was limited to the scope of the senders that declared them
upon registration.

For example, let’s say you have three posible sensors, each one destined to measure temperature,
humidity and light intensity.
These will play the role of senders, called temp, humidity and light.
They all register the same event, called changed, that is fired when the value of their
measurement changes significantly.

In order to listen for the changed event, you have to register three times, as follows:

router.addRemoteListener(callback, "temp" , "changed")
router.addRemoteListener(callback, "humidity", "changed")
router.addRemoteListener(callback, "light" , "changed")

If the data published to any of the changed event is generic enough to determine its
type, registering for each sender in particular may not be so scalable if another set of
sensors will be deployed later on.
We will have to modify the code to keep adding subscription to senders that trigger the
same event.

For this purpose pysig introces the notion of channel events.
Using channel events, a listener can only subscribe to one generic event and listen
for events from senders that share the same channel, transparently.

Like in the case of broadcast events, you can differentiate between different senders
using the info parameter, passed to the callback.

Senders

The design of pysig intends that channel events to be declared explicit by the senders
that want to share the same event.
In order to achieve this easily, we only need to prefix the events with the “#” character.

For the temperature sensor, the code would look like:

sender = router.addRemoteSender("temp", ["#changed", "cold", "hot"])

This tells pysig that the changed event is a channel event, while the cold and
hot events are events specific to this sensors.

To use the same channel, the humidity sensor will register like this:

sender = router.addRemoteSender("humidity", ["#changed", "dry", "wet"])

Now, the two senders share the same changed event.
In comparison to a regular event, the main difference for the changed event is that allows
listeners to register to this event without the need of knowing which senders are publishing it.

Listeners

This is where channel events are visibly different from any others.

We can now capture all changed events with only one subscription:

router.addRemoteListener(callback, event= "#changed")

or, equaly correct

router.addRemoteListener(callback, None, "#changed")

As it appears, we have registered to the broadcast sender for an event called changed.
We will now receive the changed event from any sender that uses this channel.

Good to know

Channel events offers great flexibility for listeners, but they introduce some complexity
that needs to be detailed.

	The built-in events of pysig are by default channels.
Therefore it may be possible to listen to any sig.EVENT_CONNECT event, for any sender that connects to the router, without having the need to subscribe to all published events and filter out connect messages.

router.addRemoteListener(listen_for_connects, event= sig.EVENT_CONNECT)

	If a sender does not explicitly declare an event as being a channel, it is considered a regular event. Therefore the following listener will receive nothing from the temp sender, even if the cold event is fired by it, because the temp sender didn’t declared the event as being a channel:

router.addRemoteListener(callback, event= "cold")

	The following subscription will register for the changed event from the temp sender and not to the changed channel, therefore will receive events only from temp sender:

router.addRemoteListener(callback, "temp","#changed")

Requests

A nice feature of pysig is that is able to request data from a particular sender, without having the
need of waiting a particular event to achieve that. This is called a request and can be made by
anyone that has access to the Router object, to any registered sender.

The way you may issue a request, is as follows:

import sig
router = sig.Router()
[...]
response = router.request("my_sender", "getWeather")
print "Response for 'getWether' is '%s'" % (response)

The limitation of the requests feature, is that it can only be issued to senders that:

	are connected to the router

	implements a special request handler

Example

The way you register a request handler for a sender is:

import sig

class SenderRequestHandler:
 def getWeather(self, params):
 if params.get("when","") == "now":
 return 20.2
 else
 return "unknown"

 def get(self, method, params):
 return "Unknown method %s" % (method)

create router
router = sig.Router()

create sender with support for requests
sender = router.addSender("my_sender", ["weather_change"], request_handler= SenderRequestHandler())

now we can request things from sender
response = sender.request("getWeather", {"when":"now"})
print "Weather now is: %s" % (response)

response = router.request("my_sender","getWether",{"when":"tomorrow"})
print "Weather tomorrow is: %s" % (response)

request something unknown
response = router.request("my_sender", "getWeatherInformation", None)
print response

Notice how we can make requests directly using Sender instance or indirectly via the Router instance.

Also notice the get method from SenderRequestHandler that is invoked when a particular method is
not found as being implemented by the request handler. This generic method is optional, but if not implemented
a request sent with an unknown method for a particular sender, will otherwise raise an LookupError exception.
This would have happened in the case of the last request to getWeatherInformation.

You can also choose just to implement this generic get method instead of implementing separate methods for
each method invoked by a request.

As a summary, the things you want to know about a request are:

	Works only for senders that are currently registered

	Any time the sender is reconnected it must pass its request handler object

	If the sender request handler doesn’t implement the generic get method, any request with an unknown method will raise an LookupError exception

	If the method implemented by the request handler raises an exception, the exception must be caught by caller

	The request returns the reponse received by the method implemented by the request handler

Extending functionality

The design of pysig is flexible so that the user can override most of it’s functionality.
We will show a couple of examples of how that can be useful.

The basics

Each router object can be instructed to use different classes. when constructing Sender, Event or Signal
objects. This can be done when a new router object is created, likewise:

import sig

class MySender(sig.Sender): pass
class MySignal(sig.Signal): pass
class MyEvent(sig.Event): pass

router = sig.Router(class_sender= MySender, class_event= MyEvent, class_signal= MySignal)

Or it can be done on the fly, like this:

router.class_sender = MySender
router.class_event = MyEvent
router.class_signal = MySignal

If you intend to modify the behavior of the Signal class, just for a particular Sender,
this is how you may proceed:

find my sender
sender = router.getSender("my_sender")

all signals created by this sender, from now on, will be
instances of MySignal class
sender.class_signal = MySignal

Exteding Signal class

The Signal class is responsible for triggering events in pysig.
The Signal object is created by the Sender class using the method getSignal, just like you’ve seen above.

By overriding the trigger method of the Signal class, we can add or modify the data parameter
or we may even add other types of information to the info parameter.

Due to the fact that the info parameter passed to the callback of a listener, is a dictionary object,
we may add additional information if we hook the Signal class and override the trigger method.

The information we’ve decided to add to the info parameter in the following example, is the number of
occurences of each event sent by any sender. For that matter, we’ve registered a listener to the router broadcast
event, in order to capture all events and we’ve used it to print the number of occurrences of that particular
event, whenever is triggered.

The number of occurrences is stored globaly and added to the info parameter by our new Signal class
called MySignal.

The full example looks like this:

Example

import sig

counts the number of occurrences for each key
count_dict = {}
def count_message_from(key):
 global count_dict
 value = count_dict.get(key,0)
 value += 1
 count_dict[key] = value
 return value

my own signal class
class MySignal(sig.Signal):

 def __init__(self, objevent, broad_events):
 sig.Signal.__init__(self, objevent, broad_events)

 def trigger(self, data):
 event_name = self.objevent.getName()
 sender_name = self.objsender.getName()

 # count each message occurrence count
 value = count_message_from("%s:%s" % (sender_name, event_name))
 self.event_info["count"] = value

 # call super
 sig.Signal.trigger(self, data)

listener callback
def listen_to_any(info, data):
 sender = info.get("sender")
 event = info.get("event")
 occur = info.get("count")
 print "Sender: %17.17s Event: %12.12s Occurrence: %u times" % (sender, event, occur)

print statistics
def print_statistics():
 print "\nEvent statistics:"
 for key, value in count_dict.iteritems():
 print "%30.30s was triggered %u times" % (key, value)

create router and instruct it to use a custom Signal class
router = sig.Router(class_signal= MySignal)

register broadcast listener
router.addListener(listen_to_any)

create sender (connect event will be triggered)
my_events = ["my_event_1", "my_event_2"]
sender = router.addSender("my_sender", my_events)

disconnect sender (disconnect event will be triggered)
router.removeSender(sender)

connect sender again (connect event will be triggered)
sender = router.addSender("my_sender", my_events)

connect another sender
sender2 = router.addSender("my_second_sender", my_events)

trigger some events
sender.getSignal(my_events[0]).trigger(None)
sender2.getSignal(my_events[1]).trigger(None)

remove senders
router.removeSender(sender)
router.removeSender(sender2)

print statistics
print_statistics()

And the output:

Sender: my_sender Event: #connect Occurrence: 1 times
Sender: my_sender Event: #disconnect Occurrence: 1 times
Sender: my_sender Event: #connect Occurrence: 2 times
Sender: my_second_sender Event: #connect Occurrence: 1 times
Sender: my_sender Event: my_event_1 Occurrence: 1 times
Sender: my_second_sender Event: my_event_2 Occurrence: 1 times
Sender: my_sender Event: #disconnect Occurrence: 2 times
Sender: my_second_sender Event: #disconnect Occurrence: 1 times

Event statistics:
 my_second_sender:#connect was triggered 1 times
 my_sender:#disconnect was triggered 2 times
 my_second_sender:#disconnect was triggered 1 times
 my_sender:#connect was triggered 2 times
 my_second_sender:my_event_2 was triggered 1 times
 my_sender:my_event_1 was triggered 1 times

By modifying only the class_signal member of a Sender object, we can achieve the same effect
but just for a particular sender.

Network features

Using pysig for intra-process communication it’s useful, especially for big applications or
aplications divided in modules that want to comunicate events to each other without requiring
to be aware of when the module is loaded by the main application. It simply favors a lite binding
between two endpoints that want to signal specific events.

For small applications though, using a centralized event dispatching framework, sounds more like
over-engineering than a good decision. How would be like to have a python application with a couple
of functions that signals events to each other via a centralized event dispatching framework?!

But for those apps and not only, a very useful feature of pysig would be
to communicate their events over the network. How would be like for your python application, even if it’s
small and straight-forward, to communicate it’s results to another application, running in the same
network (or even outside the local network) in real time?!

Important

When pysig is running over a network, it still supports the same number of features described before.
That is, the following features are still available:

	registration to specific sender events

	connect/disconnect events

	broadcast events

	channels

	requests

Use cases

We would like to list just a couple of possible applications for communicating events over a network, using
a simple framework like pysig.

Distributed applications

You can create a listener that subscribes itself to several senders and several events, that simply logs
the incoming data and processes it in a meaningful way. The senders can connect when they want and signal
events to the router whenever their finish their jos and have new meaningful data (e.g. a python script
that measures disk usage on each machine).

You can make several different python applications that run on a schedule, by unix-like cron (or Windows Scheduler)
and signals their results to the router. Whenever the application that listens for this events it’s up,
the data is stored or logged or processed.

This creates a very flexible setup, that can be adjusted on the run with no hassle.

Sensors

Almoast the same scenario as [1], just that in this case the sensor sends the data to our pysig router,
based on a trigger that may happen spuriously (e.g. when the light sensor is detecting day or night) and not
on a regular basis, as [1] implies.

Anyone interested on the information signaled by these sensors will register theirselfs to the router, for
a specific event or for all events triggered by a sensor.

Both the sensors and the listeners can be installed on different machines communicating via the local network or
the internet and connected to the centralized pysig router.

Push-like service

We can run a push-like service for your python applications and by using the dispatching mechanism implemented
in pysig a listener that connects to the service, will register itself just for the events that presents
interest.

The design in pysig is flexible, so you may implement your own message carrier, focusing only on how to
transmit and receive data over the network and not the entire dispatching logic, that is already assured by
pysig.

Therefore, you can make an UDP carrier, TCP carrier or even HTTP carrier that may run on plain or encrypted
channels.

Inter-process communication

Of course, IPC is a good application example of pysig.

If your application requires dispatching events to another application, running on the same machine, pysig
can do the job. You can run a server on the targeted machine that handles all the message dispatching, with
different processes connect to it via sockets or pipes.

Custom transport

You can define custom carriers for pysig events that can transport them over different communication
environments, like serial connections.

Once you define and implement your custom carrier, you can decide how the messages are packed, encrypted or compressed over this transport medium.

Design

In pysig there are three classes which allows senders, listeners and routers to be inter-connected via
a common data transportation channel.

Server Router

The first one is the ServerRouter, which is reponsible with receiving
commands and messages from its connected clients and dispatch them accordingly.
The ServerRouter class is declaring several RPC methods (where RPC stands
for Remote Procedure Call) in order to allow a remotely connected sender or
listener to register and receive events.

All the senders registered to this endpoint, whether they where registered
by the python application that created the object (using direct API calls
like ServerRouter.addSender) or they are registered remotely (via a message),
are visible to any listener connected to it.

The ServerRouter design is stateful meaning it’s aware of each currently
connected listener and each connected sender.
Whenever one of them disconnects, it is automatically removed from the dispatching framework.
To exemplify this more clearly, if you register a sender on a machine that somehow
looses network connection with the ServerRouter, the server will automatically
remove sender (i.e. just like if ServerRouter.removeSender was called) and it will fire
the sig.EVENT_DISCONNECT for all listeners registered to this event.

Client Router

As you may expect, there is a implementation for the client side too.
This ClientRouter allows you to register remote listeners and remote
senders to a ServerRouter via whatever transportation carrier you are using.

Using this router, you can register senders and their corresponding events to the centralized ServerRouter and
trigger events almoast the same way you would have done using a simple, local Router implementation.
Those events will be communicated over network by the ClientRouter.

Important

Please note that there is a slight distiction between the Router and the ClientRouter class.
If you use the functions addListener/addSender respectively, you will register listeners/senders
only locally visible.

If you intend to add listeners or senders connected to the ServerRouter, you must use the following
corresponding set of functions:

	addRemoteListener / removeRemoteListener

	addRemoteSender / removeRemoteSender

This distinction is valid only for ClientRouter and not for the ServerRouter where all registered
senders or listeners are visible to the connected clients.

For firing requests you must use remoteRequest instead of request function.

Carrier

The Carrier implementation is the main actor of this remote signaling feature of pysig. The class is expected
to be inherited by the one that really implements the transportation layery.

The role of the Carrier is to provide an abstract API for the ServerRouter and ClientRouter for sending and
receiving messages.

The Carrier class defines the following methos, that MAY or MUST be implemented.

Carrier.pack(self, message)

This methods packs the received message to a format that is acceptable by the carrier. It returns the object containing
the packed data or None in case of an exception.

The default implementation uses json module and encodes the message in a json object, therefore the method MAY
be overrided.

Carrier.unpack(self, data)

This method unpacks the received data and returns the python dictionary object containing the message. In case of an
exception it returns None.

The default implementation uses json module to decode the data, therefore it MAY be overrided.

Carrier.handleRX(self, clientid, message)

This method MUST be invoked by the carrier implementation whenever a new message is received. The message passed
to this function must be already unpacked and ready to be interpreted.

The main purpose of this method is to translate the message and run the corresponding RPC method. The RPC methods
supported will be listed by the Carrier.methods dictionary, in the following format:

Carrier.methods = { “method_name” : method_callback, […] }

When this function is called, it will execute Carrier.handleRPC function to search for methods defined by Carrier.methods
and execute them accordingly. The function will always return a reply message, that must be sent back to the client,
even if the method is unsupported (is not present in Carrier.methods) or it fails during execution. The method
will not raise an exception.

The clientid paremeter, uniquely identifies the client from which this mesage was received and it will be used mostly
by the ServerRouter class to distinguish between multiple connected clients. It can be in any form (e.g. int or str),
as long as it is uniquely identifying the client. For ClientRouter implementation it can be anything, it will be ignored.

For example, for a TCP Server, the clientid will be unique for each client connected to the listening socket. The identifier
can be the id of the instance that is processing the communication with the client.
When the Carrier receives this parameter on its Carrier.handleTX function, it will select the proper client to send its
message to.

This method MAY NOT be overrided.

Message format

{
 "id" : "23",
 "method" : "add_sender",
 "params" :
 {
 "sender" : "lorem",
 "events" : ["ipsum"]
 }
}

Reply format

{
 "id" : "23",
 "status" : 0,
 "response" : None
}

As you can see in this format, the method name is stored in the method field while it’s parameter within the params
field. Each message must contain these two fields, including the id field that will be described below.

Each reply however, returns back the same id field received within the message, a status field containing the error
code that Carrier.handleRPC returned and the response field that stores that the RPC method responded with.

In case the RPC method raised an exception, the reply will also store a field called exception containing the string
representation of the exception raised.

Carrier.handleTX(self, clientid, message)

This method MUST be implemented in order to allow sending data to a specific client. The message passed to this function
must be packed before doing the actual send operation. The default implementation does nothing.

The method MUST return the reply received by the client specified by clientid, in a python dictionary object, threfore it must be unpacked.
In pysig no message is sent without receiving a reply.

This method MUST add to the message an unique identifier called the id field. This is useful
for avoiding the case where the immediate data received after sending the message is NOT the reply that actually corresponds to this
message but some other sent before it. The Carrier.handleRX default implementation, will store the id field from
the message and sent it back in the reply (see the example above).

Note:

There are several rules that you must respect, when implementing a carrier:
* each message sent respects the format above (contains id, method, params as fields)
* each reply respects the format above (contains id, status, response and may contain exception as fields)
* each call to Carrier.handleTX will return the corresponding reply in an unpacked form
* the method Carrier.handleRX must be called for each message (not reply) received in an unpacked form

Carrier.handle_client_connected(self, clientid)

This method MUST be invoked by the implementation whenever a new client is connected. It is useful for ServerRouter
and not for a carrier used in the context of the ClientRouter. Upon calling this method ServerRouter will map
the corresponding data to this client.

Returns nothing.

Carrier.handle_client_disconnected(self, clientid)

This method MUST be called by the implementation whenever an existing client is disconnected. It is useful only for
ServerRouter. Upon calling this method the ServerRouter will detach all registered listeners or senders corresponding
by this client.

Returns nothing.

Carrier.handle_all_clients_diconnected(self)

This method MAY be called by the implementation whenever the server looses connection with all of his clients.
This method is useful for ServerRouter and it’s an optimized version for callind Carrier.handle_client_disconnected
for each client in particular.

Returns nothing.

Built-in carriers

Currently pysig suppors several ready-to-use carriers, as follows:

	TCP Server for using it in conjuction with ServerRouter

	TCP Client for using it in conjuction with ClientRouter

	Local carrier, for testing purposes only

TCP Server

pysig provides a ready-to-use TCP Server carrier for connecting it to the ServerRouter.
The way you use it is pretty simple

import time
import sig
from sig.carrier.tcpserver import *

create the tcp server
tcp_server = CarrierTCPServer()

create the server router
router = sig.ServerRouter(tcp_server)

add a sender
sender_timer = router.addSender("timer", ["tic"])
signal_tic = sender_timer.getSignal("tic")

start server
tcpserver.start("localhost", 3000)

loop
try:
 while True:
 # tic every ten seconds
 signal_tic.trigger(None)
 time.sleep(10)
except KeyboardInterrupt:
 print "Stopping server.."
 tcpserver.stop()
 print "Done."

Very well, we have a server router that sends a tic signal every ten seconds.
This signal can be listened by anyone on the network that can connect to this machine to tcp port 3000.

TCP Client

Also, pysig has a ready-to-use TCP Client carrier for pairing it with ClientRouter.
This carrier of course can communicate with the built-in TCP server presented above.

Let’s see how we can listen for the tic signal sent above:

import sig
import time
from sig.carrier.tcpclient import *

create the tcp client
tcpclient = carrier.CarrierTCPClient()

create the client router
router = sig.ClientRouter(tcpclient)

connect client to the server
tcpclient.connect("localhost", 3000)

register for the tic signal
def listen_for_tic(info, data):
 print "'%s' received from '%s' (data: %s)" % (info.get("event"), info.get("sender"), data)

router.addRemoteListener(listen_for_tic, "timer", "tic")
router.addRemoteListener(listen_for_tic, "another_timer", "tic")

loop
try:
 while True: time.sleep(10)
except KeyboardInterrupt:
 print "Disconnecting client.."
 tcpclient.disconnect()
 print "Stop"

Great, we have our client connected to the server above.
Notice how we used addRemoteListener and not addListener.
The difference between these two is that the last one only registers a listener to local senders and not the senders registered to our ServerRouter.
That is, you can still use addListener to connect to senders directly registered to ClientRouter and not the ServerRouter we’ve created in our
first example.

Also, please notice our second listener registration, to a sender called another_timer.
For now, this client will register itself to an unexisting sender, which is quite legit in pysig.
Wouldn’t be nice to use a client for adding senders to the entire scheme?

Let’s see how we can do that in our next example.

import sig
import time
from sig.carrier.tcpclient import *

create the tcp client
tcpclient = carrier.CarrierTCPClient()

create the client router
router = sig.ClientRouter(tcpclient)

connect client to the server
tcpclient.connect("localhost", 3000)

add our remote sender
sender = router.addRemoteSender("another_timer", ["tic"])
signal_tic = sender.getSignal("tic")

loop
try:
 while True:
 time.sleep(10)
 signal_tic.trigger(None)
except KeyboardInterrupt:
 print "Disconnecting client.."
 tcpclient.disconnect()
 print "Stop"

That’s it. If we run all three examples in the same time, we will have:
* a server that triggers a tic event in the name of timer as sender
* a client that triggers a tic event in the name of another_timer as sender
* a client that registers for listening both tic events

Of course, as a consequence, the client that listens for the tic events will receive events from another_timer
only when the client that registers the remote sender is running. But will always receive the tic events from
the timer sender, that is directly registered to the ServerRouter.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pysig’s documentation!

 		
 About

 		
 Feature set

 		
 Terminology

 		
 Router

 		
 Sender

 		
 Listener

 		
 Event

 		
 Signal

 		
 Carrier

 		
 Logging support

 		
 Roadmap

 		
 Authors

 		
 Getting started

 		
 The basics

 		
 Example

 		
 Network

 		
 Carrier

 		
 Server

 		
 Client

 		
 Examples

 		
 Features

 		
 Subscriptions

 		
 Types of subscriptions

 		
 Example

 		
 Broadcast events

 		
 Sender broadcast event

 		
 Router broadcast event

 		
 Example

 		
 Channel Events

 		
 Senders

 		
 Listeners

 		
 Good to know

 		
 Requests

 		
 Example

 		
 Extending functionality

 		
 The basics

 		
 Exteding Signal class

 		
 Example

 		
 Network features

 		
 Important

 		
 Use cases

 		
 Distributed applications

 		
 Sensors

 		
 Push-like service

 		
 Inter-process communication

 		
 Custom transport

 		
 Design

 		
 Server Router

 		
 Client Router

 		
 Carrier

 		
 Built-in carriers

 		
 TCP Server

 		
 TCP Client

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

